Abstract

The cosparse analysis model has been introduced recently as an interesting alternative to the standard sparse synthesis approach. A prominent question brought up by this new construction is the analysis pursuit problem – the need to find a signal belonging to this model, given a set of corrupted measurements of it. Several pursuit methods have already been proposed based on ℓ1 relaxation and a greedy approach. In this work we pursue this question further, and propose a new family of pursuit algorithms for the cosparse analysis model, mimicking the greedy-like methods – compressive sampling matching pursuit (CoSaMP), subspace pursuit (SP), iterative hard thresholding (IHT) and hard thresholding pursuit (HTP). Assuming the availability of a near optimal projection scheme that finds the nearest cosparse subspace to any vector, we provide performance guarantees for these algorithms. Our theoretical study relies on a restricted isometry property adapted to the context of the cosparse analysis model. We explore empirically the performance of these algorithms by adopting a plain thresholding projection, demonstrating their good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.