Abstract
We investigated the optomechanical dynamics and explored the quantum phase of a Bose-Einstein condensate in a ring cavity. The interaction between the atoms and the cavity field in the running wave mode induces a semiquantized spin-orbit coupling (SOC) for the atoms. We found that the evolution of the magnetic excitations of the matter field resembles that of an optomechanical oscillator moving in a viscous optical medium, with very good integrability and traceability, regardless of the atomic interaction. Moreover, the light-atom coupling induces a sign-changeable long-range interatomic interaction, which reshapes the typical energy spectrum of the system in a drastic manner. As a result, a new quantum phase featuring a high quantum degeneracy was found in the transitional area for SOC. Our scheme is immediately realizable and the results are measurable in experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.