Abstract

After a quick review of the basic theory of quantum optomechanical systems, based largely on linearized Heisenberg–Langevin equations, this chapter focuses on selected topics related to quantum measurement and quantum optomechanics. Included are: a comprehensive discussion of the quantum limit on the added noise of a continuous position detector, following the quantum linear response approach; a detailed discussion of the role of noise correlations, and how these can be achieved in an optomechanical cavity (by using squeezed input light, or by modifying the choice of measured output quadrature); and a discussion of back-action evading measurements of a mechanical quadrature, discussing how this can be achieved in a two-tone driven cavity system. The chapter ends with a quick introduction to the theory of conditional continuous quantum measurement, and a discussion on how a back-action evading measurement can be used to produce conditional mechanical squeezed states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call