Abstract

This paper presents the design, fabrication and performance of an uncooled micro-optomechanical infrared (IR) imaging system consisting of a focal-plane array (FPA) containing bi-material cantilever pixels made of silicon nitride (SiNx) and gold (Au), which serve as infrared absorbers and thermomechanical transducers. Based on wave optics, a visible optical readout system is designed to simultaneously measure the deflections of all the cantilever beams in the FPA and project the visible deflection map onto a visible charge-coupled device (CCD) imager. The IR imaging results suggest that the detection resolution of current design is 3-5 K, whereas noise analysis indicates the current resolution to be around 1 K. The noise analysis also shows that the theoretical noise-equivalent temperature difference (NETD) of the system can be below 3 mK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.