Abstract

The demonstration of a quantum link between microwave and optical frequencies would be an important step toward the realization of a quantum network of superconducting processors. A major impediment to quantum electro-optic transduction in all platforms explored to date is noise added by thermal occupation of modes involved in the transduction process, and it has proved difficult to realize low thermal occupancy concurrently with other desirable features like high duty cycle and high efficiency. In this work, we present an efficient and continuously operating electro-optomechanical transducer whose mechanical mode has been optically sideband cooled to its quantum ground state. The transducer achieves a maximum efficiency of 47% and minimum input-referred added noise of 3.2 photons in upconversion. Moreover, the thermal occupancy of the transducer’s microwave mode is minimally affected by continuous laser illumination with power more than 2 orders of magnitude greater than that required for optomechanical ground-state cooling.3 MoreReceived 24 December 2021Revised 12 April 2022Accepted 19 April 2022DOI:https://doi.org/10.1103/PhysRevX.12.021062Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum information with atoms & lightQuantum information with hybrid systemsQuantum information with solid state qubitsQuantum networksQuantum Information

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call