Abstract
Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing invivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.