Abstract
Metal-semiconductor interfaces are ubiquitous in modern electronics. These quantum-confined interfaces allow for the formation of atomically thin polarizable metals and feature rich optical and optoelectronic phenomena, including plasmon-induced hot-electron transfer from metal to semiconductors. Here, we report on the metal-semiconductor interface formed during the intercalation of zero-valent atomic layers of tin (Sn) between layers of MoS2, a van der Waals layered material. We demonstrate that Sn interaction leads to the emergence of gap states within the MoS2 band gap and to corresponding plasmonic features between 1 and 2 eV (0.6-1.2 μm). The observed stimulation of the photoconductivity, as well as the extension of the spectral response from the visible regime toward the mid-infrared suggests that hot-carrier generation and internal photoemission take place.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.