Abstract

In our work, we have engineered low capacitance single quantum dot photodiodes as sensor devices for the optoelectronic sampling of ultrafast electric signals. By the Stark effect, a time-dependent electric signal is converted into a time-dependent shift of the transition energy. This shift is measured accurately by resonant ps laser spectroscopy with photocurrent detection. In our experiments, we sample the laser synchronous output pulse of an ultrafast CMOS circuit with high resolution. With our quantum dot sensor device, we were able to sample transients below 20 ps with a voltage resolution in the mV-range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call