Abstract

The n-type nitrogen doped amorphous carbon (a-C:N) thin films have been grown by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) system on silicon, quartz and ITO substrates at different nitrogen flow rates (1 to 4 sccm). The effects of nitrogen doping on chemical, optical, structural and electrical properties were studied through X-ray photoelectron spectroscopy, Nanopics 2100/NPX200 surface profiler, UV/VIS/NIR spectroscopy, Raman spectroscopy and solar simulator measurements. Argon, acetylene and nitrogen are used as plasma sources. Optical band gap decreased and nitrogen atomic concentration (%) increased with increasing nitrogen flow rate as a dopant. The a-C:N/p-Si based device exhibits photovoltaic behavior under illumination (AM 1.5, 100 mW/cm 2), with a maximum open-circuit voltage ( V oc), short-circuit current ( J sc) and fill factor of 4.2 mV, 7.4 μA/cm 2 and 0.25 respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.