Abstract

The generation and manipulation of small aqueous droplets is an important issue for nano- and biotechnology, particularly, when using microfluidic devices. The production of very small droplets has been frequently carried out by applying intense local electric fields to the fluid, which requires power supplies and metallic electrodes. This procedure complicates the device and reduces its versatility. In this work, we present a novel and flexible, to the best of our knowledge, electrodeless optoelectronic method for the production of tiny droplets of biologically friendly aqueous fluids. Our method takes advantage of the photoinduced electric fields generated by the bulk photovoltaic effect in iron-doped lithium niobate crystals. Two substrate configurations, presenting the polar ferroelectric axis either parallel or perpendicular to the active surface, have been successfully tested. In both crystal geometries, small droplets on the femtoliter scale have been obtained, although with a different spatial distributions correlated with the symmetry of the photovoltaic fields. The overall results demonstrate the effectiveness of the optoelectronic method to produce femtoliter droplets, both with pure water and with aqueous solutions containing biological material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.