Abstract
Firstly, the metallic complexes containing 8‐hydroxyquinoline were designed theoretically to investigate their optoelectronic properties (M = Sc2+, Ti2+, V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ Pd2+, and Pt2+ and Q: 8‐Hydroxyquinoline). Monomer calculations were executed at B3LYP/6-31G(d) level in Gaussian 16 program and LANL2DZ basis set was used only for Pd and Pt metals. On the other hand, dimer calculations were performed at B3LYP/TZP level by Amsterdam Density Functional (ADF) 2019 software. Using quantum chemical parameters, the optoelectronic behavior of the complexes was estimated and the best for devices such as the organic light emitting diode (OLED) structure was proposed. Secondly, the transport properties of the mentioned complexes are determined by nonequilibrium Green's function (NEGF) method based on the combination DFT in QuantumATK 2018 software. With this technique, the I–V characteristics and the transmission spectra of the investigated complexes is calculated and analyzed in range of 0–2 bias voltage. From the NEGF results, it is found that the best and the worst conductor complex in this voltage range and the best candidate for electronic devices like nanowires is suggested. The compounds studied in this study are considered as excellent candidates for next-generation optoelectronic and electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.