Abstract

Organic light-emitting devices (OLEDs) with various cathode structures were prepared on indium tin oxide (ITO) substrates by vacuum sublimation technique, and the effects of the device cathodes on the electroluminescence (EL) characteristics of OLEDs were studied in terms of the luminance, efficiency, driving voltage and threshold voltage. The results demonstrate that the optical and electrical performance of OLEDs depend on the properties of the devices' cathodes and the characteristics of the cathode–organic interface and the organic–organic interface. The optoelectrical performance of a device with composite cathodes is better than that of the devices with metal alloy and pure metal cathodes. The improvement in the device performance can be attributed to a more efficient electron injection at the cathode–organic interface, a better balanced hole and electron recombination in the light-emitting layer and fewer accumulated charges near the organic–organic interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call