Abstract

Transparent conducting electrodes (TCEs) are key materials for electronic devices such as flat panel displays (e.g., a liquid crystal display and a light emitting diode display), photovoltaic cells, and transparent transistors. Tin-doped indium oxide (ITO) is known to be highly conductive/transparent, but rigid. In this study, very thin (<35 nm) ITO films with amorphous phases were prepared on flexible substrates and their optoelectric properties investigated. A 10 nm-thick ITO film was also fabricated. Because of their low thickness, their transmittances were above 80% at ˜550 nm wavelength. Their sheet resistances were below 0.7 kΩ/sq and decreased with increasing film thickness. An interesting observation was that their sheet resistances were nearly unchanged even at a bending radius of ˜2 mm. These optoelectric properties and flexibility demonstrate that the ITO films fabricated in this study are suitable transparent conducting oxides for the electrodes of flexible optoelectric devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call