Abstract

Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC), there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets) and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches), with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates.

Highlights

  • From the perspective of the United Framework Convention on Climate Change (UNFCCC) for REDD+, forest degradation refers to a loss of carbon stock within forest land

  • From the perspective of the UNFCCC for REDD+, forest degradation refers to a loss of carbon stock within forest land

  • While deforestation usually removes almost all of the forest carbon stock permanently, the losses in term of carbon stock due to forest degradation depend on the type and the frequency of the human-induced disturbances

Read more

Summary

Introduction

From the perspective of the UNFCCC for REDD+, forest degradation refers to a loss of carbon stock within forest land. Forest disturbances that lead to degradation such as over-harvesting, forest fires, pests and climatic events including drought, wind, snow, ice, and floods have been estimated to affect roughly 100 million of hectares globally per year [1,2] This value represents almost 10 times the area that is affected by deforestation globally (i.e. 13 million hayr-1 for 2000-2005) [3,4]. To address climate change mitigation actions in the forest sector, five different components have been agreed upon by Parties to the United Framework Convention on Climate Change (UNFCCC) under negotiations for Reduced Emissions from Deforestation and Degradation (REDD+). REDD+ has specific monitoring requirements including a focus on the national level, the use of the IPCC guidance, the need to establish a reference emission level, and to assess how REDD+ policies and measures address the drivers and activities causing forest carbon loss,. The data availability varies for differing historical periods and regions

Discussion
Conclusions
40. Herold M
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.