Abstract

Nearly 30% of the input energy to a diesel engine is wasted through the exhaust gas; thus, considerable attention has been directed toward developing efficient heat recovery systems for these engines. Given the demonstrated ability of nanofluids to boost the heat transfer rate of heat exchangers, these heat transfer fluids merit consideration for use in diesel exhaust heat recovery systems. In this study, the effects of employing nanofluids on the optimum design of these systems are investigated. An existing heat diesel engine exhaust heat recovery system is modeled to work with Al2O3/water and a modified imperialist competitive algorithm is employed for the optimization. Seven variables consisting of five heat exchanger geometric characteristics together with nanoparticle volume fraction and coolant mass flow rate are considered as design variables. The heat exchanger cost and charging rate of the storage tank are optimization objectives, while the greenhouse gas savings of the heat recovery system are assessed for measuring the environmental impact of the energy recovery. The results indicate that the proposed approach can overcome the challenge of finding the near-optimal design of this complex system and using nanofluids enhances the performance of the heat recovery heat exchanger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.