Abstract

In the present study, both critical buckling load maximization and face-sheet laminate thickness minimization problems for the composite sandwich panel, subjected to bi-axial compressive loading under various imposed constraints have been investigated using genetic algorithms. In the previously published work, the optimization of simple composite laminate panels with only even number of laminae has been considered [1, 3]. The present work allows the optimization of a composite sandwich panel with both even and odd number of laminae in the face-sheet laminates. Also, the effects of the bending-twisting coupling terms (D16 and D26) in bending stiffness matrix which were neglected in the previous studies [1, 2, 3], are considered in the present work for exact solutions. In addition effect of both balanced and unbalanced face-sheet laminates on the optimum solutions have also been investigated, whereas only balanced laminates were considered in the previous studies [1, 2, 3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.