Abstract

The chirp, optical extinction ratio and insertion loss of an electroabsorption modulator (EAM) depend on the properties of the bulk or multiple-quantum-well absorption layer of the device and on the bias voltage and modulating voltage waveform. For 10 Gb/s transmission over nondispersion shifted fiber, joint optimization of the bias and modulation voltages is considered for five different EAM's. To comprehensively explore this issue, the measured dependence of the absorption and /spl alpha/-parameter on applied voltage is used to accurately model an EAM in a system simulator. The effects of group velocity dispersion and self-phase modulation arising from the Kerr nonlinearity are included to permit assessment of the dependence of the optimum bias and modulation voltages on the average transmitted optical power for a given fiber length. The improvement in receiver sensitivity, relative to that obtained with maximum optical extinction ratio, depends quite significantly on the transmitted optical power and the specific properties of the modulator. This makes it difficult to determine optimum operating conditions which apply generally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call