Abstract

The chirp and optical extinction ratio of a multiple quantum-well (MQW) Mach-Zehnder modulator depend on the device design and on the voltage waveforms applied to the arm electrodes. For 10 Gb/s transmission over nondispersion shifted fiber, joint optimization of the bias and modulation voltages is considered for a conventional modulator and a /spl pi/-phase-shift modulator. Measured attenuation and phase constants for an optical signal propagating in the modulator waveguide are used to accurately model the Mach-Zehnder modulators. The influence of asymmetric Y-branch waveguides in the modulators is examined taking into consideration group velocity dispersion and self-phase modulation arising from the Kerr nonlinearity. When the modulators are operated with maximum optical extinction ratio, the dispersion limited transmission distance depends on the device design (phase-shift and Y-branch splitting ratio) and modulation format (dual drive or single drive). Optimization of the bias and modulation voltages reduces this dependence significantly, while also increasing the dispersion limited transmission distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.