Abstract
This paper provides a design guide for optimum design of an RF power amplifier with a predistortion linearizer. For a two-tone signal, three performance degradation factors, higher order terms, amplitude, and phase mismatches are analyzed quantitatively. The results are implemented to the design of optimized predistortion power amplifier for a WCDMA signal application. For the experiments, a 2.4-GHz class-AB power amplifier is fabricated using an LDMOSFET with a 30-W peak envelope power. A simple third-order predistorter is used to measure the relative phases of the harmonics, as well as to linearize the amplifier. The performance of the optimized predistortion power amplifier is excellent for an IS-95 code-division-multiple-access signal. Finally, a method for reducing the memory effects of the amplifier is devised to get a good cancellation performance for a wide-band signal, and the performance degradation caused by the memory effects is analyzed. For a forward-link four-carrier WCDMA signal, the predistortion power amplifier delivers an adjacent channel leakage ratio of -46 dBc at a 4-W average output power with a cancellation of 13.4 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.