Abstract

This paper explores the problem of architectural synthesis (scheduling, allocation, and binding) for multiple word-length systems. It is demonstrated that the resource allocation and binding problem, and the interaction between scheduling, allocation, and binding, are complicated by the existence of multiple word-length operators. Both optimum and heuristic approaches to the combined problem are formulated. The optimum solution involves modeling as an integer linear program, while the heuristic solution considers intertwined scheduling, binding, and resource word-length selection. Techniques are introduced to perform scheduling with incomplete word-length information, to combine binding and word-length selection, and to refine word-length information based on critical path analysis. Results are presented for several benchmark and artificial examples, demonstrating significant resource savings of up to 46% are possible by considering these problems within the proposed unified framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.