Abstract
With the growing need for renewable energy, wind farms are playing an important role in generating clean power from wind resources. The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency. This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization (PSO) and artificial neural networks (ANNs). The PSO method was used to explore the solution space and develop preliminary turbine layouts, and the ANN model was used to fine- tune the placements based on the predicted energy generation. The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits. The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches, giving exciting prospects for developing more efficient and sustainable wind farms. The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques. Furthermore, this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency. A notable increase in power generation is observed across various scenarios. The percentage increase in the power generation ranged from approximately 7.7% to 11.1%. Owing to its versatility and adaptability to site-specific conditions, the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.