Abstract

An optimal geographical location of wind turbines can ensure the optimum total energy output of a wind farm. This study introduces a new solution to the optimization of wind farm layout (WFLO) problem based on a three-step strategy and particle swarm optimization as the main method. The proposed strategy is applied to a certain WFLO to generate highly efficient optimal output power. Three case scenarios are considered to formulate the non-wake and wake effects at various levels. The required wind turbine positions within the wind farm are determined by the particle swarm optimization method. The rule of thumb, which determines the wind turbine spacing, is thoroughly considered. The MATLAB simulation results verify the proposed three-step strategy. Moreover, the results are compared with those of existing research works, and it shows that the proposed optimization strategy yields a better solution in terms of total output power generation and efficiency with a minimized objective function. The efficiencies of the three case studies considered herein increase by 0.65%, 1.95%, and 1.74%, respectively. Finally, the simulation results indicate that the proposed method is robust in WFLO design because it further minimizes the objective function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call