Abstract

The placement and configuration of wind turbines (WTs) are the key factors in determining the performance and energy output of a wind farm (WF). This involves considering various elements such as wind speed, wind direction, and the interspacing between turbines in the design process. To achieve an optimized and consistent wind farm layout optimization (WFLO) for maximum output power, a novel hybrid algorithm hybrid particle swarm optimization and genetic algorithm (HPSOGA), combining particle swarm optimization (PSO) and genetic algorithm (GA), is proposed. HPSOGA can effectively handle problems with multiple local optima, as PSO explores multiple regions and GA refines solutions found by PSO. The framework has two phases, where PSO improves initial parameters in the first phase, and parameters are adjusted in the second phase for improved fitness. The wake effect is analyzed using the Jenson-Wake model, and the objective function considers the total cost of WTs and the power output of the WF. The interspacing of WTs is evaluated by the rule of thumb. HPSOGA outperforms other methods such as GA, BPSO-TVAC, L-SHADE, BRCGA, and EO-PS, producing better results in terms of total output power generation. The simulation results validate the reliability of HPSOGA in WFLO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.