Abstract
This study investigates the application of the vertical zone refining process to produce ultra-high-purity tin. Computational fluid dynamics (CFD) simulations were conducted using an Sn-1 wt.%Bi binary alloy to assess the effects of two key parameters—heater temperature and pulling rate—on Bi impurity segregation. The simulations revealed a dynamic evolution in molten zone height, characterized by an initial rapid rise, followed by a gradual increase and ending with a sharp decline. Despite these fluctuations, the lower solid–liquid interface consistently remained slightly convex. After nine zone passes, impurities accumulated at the top of the sample, with dual vortices forming a rhombus- or gate-shaped negative segregation zone. The simulations demonstrated that lower heater temperatures and slower pulling rates enhanced impurity segregation efficiency. Based on these results, experiments were performed using 6N-grade tin as the starting material. Glow discharge mass spectrometry (GDMS) analysis showed that the effective partition coefficients (keff) for impurities such as Ag, Pb, Co, Al, Bi, Cu, Fe, and Ni were significantly less than 1, while As was slightly below but very close to 1, and Sb was above 1. Under optimal conditions—405 °C heater temperature and a pulling rate of 5 μm/s—over 60% of impurities were removed after nine zone passes, approaching 6N9-grade purity. These findings provide valuable insights into optimizing the vertical zone refining process and demonstrate its potential for achieving 7N-grade ultra-high-purity tin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have