Abstract

Experimental studies were conducted utilizing advanced equipment comprising a generator, tubing system, pump module, sonographer, and PC. The generator serves as the central component connected by tubes to the pump, forming a closed circuit. A tee in the tubing set prevents Doppler fluid leakage, with the fluid poured through a special funnel into the circuit post-connection. The Doppler fluid is evenly mixed by shaking its bottle to enhance signal strength. The entire system is sealed. The centrifugal pump generates continuous flows; different power modes were tested for 30 minutes each, with frequency shifts measured at angles α=15°, 30°, and 60°. Pump disconnection from the power supply prevents liquid entry during tubing connection. The pump module housing includes ventilation holes. A 3 by 8 cm Doppler prism, treated with ultrasonic gel, was connected to the tubing to capture data. A sonographer emitting signals at 2 MHz, with a gain range of 10 to 40 dB, was utilized for sound spectra analysis. High-mode operation, 4 microseconds pulse duration, and a 32 microseconds receiver gate were set. The ultrasound apparatus dimensions were 230 x 236 x 168 mm, with a power consumption of 27 VA. Data visualization was facilitated by an LED panel, with adjustable acoustic signal volume. A USB interface enabled connection to a PC for ease of use and data analysis. Special software facilitated graph generation depicting frequency vs. time dependence measurements. Frequency analysis yielded average (f-mean) and maximum (f-max) frequency values, with f-mean utilized to measure Doppler effect frequency shift. The presented data showcases various pump speeds and incidence angles, each yielding distinctive frequency characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call