Abstract

This study utilizes an optical method of transcutaneous oxygen sensing that has the potential to revolutionize at-home care. This technique is based on quenching the luminescence of a platinum porphyrin film. Since oxygen quenches luminescence, its lifetime is further measured to assess the partial pressure of transcutaneous oxygen diffusing through the skin. Unlike conventional transcutaneous oxygen monitors that use electrochemical sensors, the luminescence-based sensor allows the use of dry electrodes that do not require heating and reduce the risk of accidental skin irritations or burns. These properties not only improve patient safety but also allow the creation of miniature wearable transcutaneous oxygen sensors for continuous and accurate remote respiratory monitoring. To this end, it is critical to assess the efficiency of the wearable sensor by determining the optimal location for its placement on the body. Depending on the location on the body, physiological factors such as blood flow rate and skin thickness affect dermal perfusion of transcutaneous oxygen. In this work, four healthy volunteers participated in subject testing. We assessed each participant at the following locations: thumb, top of the wrist, forearm, thigh, and shin. All locations consistently reported accurate and reliable data. Among them, the thumb demonstrated shorter settling times and the most uniform luminescence lifetime values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.