Abstract

Most approaches to silicon-based thermoelectrics are focused on reducing the lattice thermal conductivity with minimal deterioration of the thermoelectric power factor. This study investigates the potential of p-type hydrogenated nano-crystalline silicon thin films (μc-Si:H), produced by plasma-enhanced chemical vapor deposition, for thermoelectric applications. We adopt this heterogeneous material structure, known to have a very low thermal conductivity (~ 1 W/m K), in order to obtain an optimized power factor through controlled variation of carrier concentration drawing on stepwise annealing. This approach achieves a best thermoelectric power factor of ~ 3 × 10−4 W/mK2 at a carrier concentration of ~ 4.5 × 1019 cm3 derived from a significant increase of electrical conductivity ~ × 8, alongside a less pronounced reduction of the Seebeck coefficient, while retaining a low thermal conductivity. These thin films have a good thermal and mechanical stability up to 500°C with appropriate adhesion at the film/substrate interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.