Abstract

Both intrinsic and doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films were prepared by plasma-enhanced chemical vapor deposition (PECVD) with various process parameters, such as a hydrogen dilution ratio, power, substrate temperature, and doping ratios of phosphorus or boron. The crystallization characteristics of nc-Si:H thin films grown with various process parameters were carefully and systematically investigated by Raman spectroscopy. Generally speaking, the results show that the higher the hydrogen dilution ratio and power or the lower the doping ratio, the higher the average grain size and the crystalline volume fraction of both thin films prepared and investigated here. In addition, a p-i-n type nc-Si:H thin film solar cell, which has an open circuit voltage of 660 mV and a short circuit current intensity of 13.06 mA/cm2, was directly prepared on a flat transparent conductive glass substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call