Abstract

Predictive geological mapping relies largely on the empirical and statistical analysis of aeromagnetic data. However, in most applications the analysis remains essentially visual and unconstrained. The lithological and structural diversity of rock units underlying the Mingan Region make it an ideal test area to apply more rigorous approaches to magnetic data processing and interpretation, and to assess their usefulness and limitations. In the application discussed here, various derivatives and transformations of the total field magnetic data are evaluated empirically by photo-interpretation using a Geographic Information System. We show that rock types are best represented using the total field and vertical derivative of the magnetic data, whereas contacts between rock types are best delineated using the horizontal derivative of the total field and the analytic signal. In addition, the maxima of the analytic signal are used to estimate the direction of dip of large-scale geological units. Statistical analyses show that the correlation between geology and magnetic data is not directly proportional. Finally, the source of discrepancies between mapped geological units and magnetic response are evaluated through theoretical data modeling of representative geological bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.