Abstract

The interpretation of magnetic field data at low magnetic latitudes is difficult because the vector nature of the magnetic field increases the complexity of anomalies from magnetic rocks. The most obvious approach to this problem is to reduce the data to the magnetic pole (RTP), where the presumably vertical magnetisation vector will simplify observed anomalies. However, RTP requires special treatment of north-south features in data observed in low magnetic latitudes due to high amplitude corrections of such features. Furthermore, RTP requires the assumption of induced magnetisation with the result that anomalies from remanently and anisotropically magnetised bodies can be severely disturbed.The amplitude of the 3-D analytic signal of the total magnetic field produces maxima over magnetic contacts regardless of the direction of magnetisation. The absence of magnetisation direction in the shape of analytic signal anomalies is a particularly attractive characteristic for the interpretation of magnetic field data near the magnetic equator. Although the amplitude of the analytic signal is dependent on magnetisation strength and the direction of geological strike with respect to the magnetisation vector, this dependency is easier to deal with in the interpretation of analytic signal amplitude than in the original total field data or pole-reduced magnetic field. It is also straightforward to determine the depth to sources from the distance between inflection points of analytic signal anomalies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.