Abstract
The stress transfer between the internal layers of multilayer graphene within polymer-based nanocomposites has been investigated from the stress-induced shifts of the 2D Raman band. This has been undertaken through the study of the deformation of an ideal composite system where the graphene flakes were placed upon the surface of a polymer beam and then coated with an epoxy polymer. It is found that the rate of band shift per unit strain for a monolayer graphene flake is virtually independent of whether it has one or two polymer interfaces (i.e., with or without an epoxy top coating). In contrast, the rate of band shift is lower for an uncoated bilayer specimen than a coated one, indicating relatively poor stress transfer between the graphene layers. Mapping of the strain in the coated bilayer regions has shown that there is strain continuity between adjacent monolayer and bilayer regions, indicating that they give rise to similar levels of reinforcement. Strain-induced Raman band shifts have also been evaluated for separate flakes of graphene with different numbers of layers, and it is found that the band shift rate tends to decrease with an increase in the number of layers, indicating poor stress transfer between the inner graphene layers. This behavior has been modeled in terms of the efficiency of stress transfer between the inner graphene layers. Taking into account the packing geometry of polymer-based graphene nanocomposites and the need to accommodate the polymer coils, these findings enable the optimum number of graphene layers for the best reinforcement to be determined. It is demonstrated that, in general, multilayer graphene will give rise to higher levels of reinforcement than monolayer material, with the optimum number of layers depending upon the separation of the graphene flakes in the nanocomposite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.