Abstract

There is a lack of prehospital hemostatic agents, especially for noncompressible hemorrhage. We previously reported PolySTAT, a unimeric, injectable hemostatic agent, that physically cross-links fibrin to strengthen clots. In this work, we sought to improve the water-solubility and synthesis yield of PolySTAT to increase the likelihood of clinical translation, reduce cost, and facilitate future mass production. First, we focused on side-chain engineering of the carrier polymer backbone to improve water-solubility. We found that substitution of the 2-hydroxyethyl methacrylate (HEMA) monomer with glycerol monomethacrylate (GmMA) significantly improved the water-solubility of PolySTAT without compromising efficacy. Both materials increased clot firmness and decreased lysis as measured by rotational thromboelastometry (ROTEM). Additionally, we confirmed the in vivo activity of GmMA-based PolySTAT by improving rat survival in a femoral artery bleed model. Second, to reduce waste, we evaluated PolySTAT synthesis via direct polymerization of peptide monomers. Methacrylamide and methacrylate peptide-monomers were synthesized and polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. This approach markedly improved the yield of PolySTAT synthesis while maintaining its biological activity in ROTEM. This work demonstrates the flexibility of PolySTAT to a variety of comonomers and synthetic routes and establishes direct RAFT polymerization of peptide monomers as a potential route of mass production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.