Abstract

BackgroundGastric Emptying Scintigraphy (GES) at intervals over 4 hours after a standardized radio-labeled meal is commonly regarded as the gold standard for diagnosing gastroparesis. The objectives of this study were: 1) to investigate the best time point and the best combination of multiple time points for diagnosing gastroparesis with repeated GES measures, and 2) to contrast and cross-validate Fisher's Linear Discriminant Analysis (LDA), a rank based Distribution Free (DF) approach, and the Classification And Regression Tree (CART) model.MethodsA total of 320 patients with GES measures at 1, 2, 3, and 4 hour (h) after a standard meal using a standardized method were retrospectively collected. Area under the Receiver Operating Characteristic (ROC) curve and the rate of false classification through jackknife cross-validation were used for model comparison.ResultsDue to strong correlation and an abnormality in data distribution, no substantial improvement in diagnostic power was found with the best linear combination by LDA approach even with data transformation. With DF method, the linear combination of 4-h and 3-h increased the Area Under the Curve (AUC) and decreased the number of false classifications (0.87; 15.0%) over individual time points (0.83, 0.82; 15.6%, 25.3%, for 4-h and 3-h, respectively) at a higher sensitivity level (sensitivity = 0.9). The CART model using 4 hourly GES measurements along with patient's age was the most accurate diagnostic tool (AUC = 0.88, false classification = 13.8%). Patients having a 4-h gastric retention value >10% were 5 times more likely to have gastroparesis (179/207 = 86.5%) than those with ≤10% (18/113 = 15.9%).ConclusionsWith a mixed group of patients either referred with suspected gastroparesis or investigated for other reasons, the CART model is more robust than the LDA and DF approaches, capable of accommodating covariate effects and can be generalized for cross institutional applications, but could be unstable if sample size is limited.

Highlights

  • Gastric Emptying Scintigraphy (GES) at intervals over 4 hours after a standardized radio-labeled meal is commonly regarded as the gold standard for diagnosing gastroparesis

  • Using the primary clinical diagnosis, defined by symptoms such as nausea, vomiting, early satiety, postprandial fullness, abdominal discomfort, and pain, in addition to evidence of delayed gastric emptying in the absence of mechanical gastric outlet obstruction, as the true status of gastroparesis, this study focuses on finding the parameters of the best linear combination of GES at different time points with training data, investigates and cross-validates its performance in test data that was not used for deriving the model

  • Linear combinations of diagnostic markers obtained by Linear Discriminant Approach (LDA) or Distribution Free approach (DF) approach usually lead to higher discriminate powers than with its individual components

Read more

Summary

Introduction

Gastric Emptying Scintigraphy (GES) at intervals over 4 hours after a standardized radio-labeled meal is commonly regarded as the gold standard for diagnosing gastroparesis. Gastric emptying scintigraphy at intervals over 4 h after a standardized meal is commonly regarded as the gold standard for measuring gastric emptying times. The technique measures radio-labeled food remaining in the stomach at hourly intervals after patient ingests a standardized meal [3] as an indicator of delayed GE. Others use the percent retention at 2-h as the routine clinical measurements of GES [8], suggesting GES at 2-h or 3-h might be the best individual time point with higher diagnostic power. Issues requiring further investigation were identified by the consensus which include: 1) use of 3-h compared to 2- and 4-h results for detection of delayed GE; and 2) use of multiple time points (2- and 4-h) versus single 2- or 4-h values for further understanding of the clinical meaning of discordant results between 2- and 4-h scans

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call