Abstract

PurposePropensity score matching is vital in epidemiological studies using observational data, yet its estimates relies on correct model-specification. This study assesses supervised deep learning models and unsupervised autoencoders for propensity score estimation, comparing them with traditional methods for bias and variance accuracy in treatment effect estimations.MethodsUtilizing a plasmode simulation based on the Right Heart Catheterization dataset, under a variety of settings, we evaluated (1) a supervised deep learning architecture and (2) an unsupervised autoencoder, alongside two traditional methods: logistic regression and a spline-based method in estimating propensity scores for matching. Performance metrics included bias, standard errors, and coverage probability. The analysis was also extended to real-world data, with estimates compared to those obtained via a double robust approach.ResultsThe analysis revealed that supervised deep learning models outperformed unsupervised autoencoders in variance estimation while maintaining comparable levels of bias. These results were supported by analyses of real-world data, where the supervised model’s estimates closely matched those derived from conventional methods. Additionally, deep learning models performed well compared to traditional methods in settings where exposure was rare.ConclusionSupervised deep learning models hold promise in refining propensity score estimations in epidemiological research, offering nuanced confounder adjustment, especially in complex datasets. We endorse integrating supervised deep learning into epidemiological research and share reproducible codes for widespread use and methodological transparency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.