Abstract

Manufacturing managers face increasing pressure to reduce inventories across the supply chain. However, in complex supply chains, it is not always obvious where to hold safety stock to minimize inventory costs and provide a high level of service to the final customer. In this paper we develop a framework for modeling strategic safety stock in a supply chain that is subject to demand or forecast uncertainty. Key assumptions are that we can model the supply chain as a network, that each stage in the supply chain operates with a periodic-review base-stock policy, that demand is bounded, and that there is a guaranteed service time between every stage and its customers. We develop an optimization algorithm for the placement of strategic safety stock for supply chains that can be modeled as spanning trees. Our assumptions allow us to capture the stochastic nature of the problem and formulate it as a deterministic optimization. As a partial validation of the model, we describe its successful application by product flow teams at Eastman Kodak. We discuss how these flow teams have used the model to reduce finished goods inventory, target cycle time reduction efforts, and determine component inventories. We conclude with a list of needs to enhance the utility of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.