Abstract
In this essay, the idea of improving plant disease prediction using a Neuro-Fuzzy-Genetic algorithm (NFGA) technique is explored. The concept of a Neuro-Fuzzy-Genetic algorithm is first described. The advantages of the NFGA technique for predicting plant disorders are next addressed. An example is then given to demonstrate how this technique has been successfully used and the advantages it offers you. A hybrid artificial intelligence technique known as a Neuro-Fuzzy-Genetic set of rules (NFGA) combines the genetic algorithms, fuzzy logic, and neural network algorithms. It entails using a method of organizing fuzzy rules for statistics type, developing a network of neurons to anticipate the level of the group of data points to positive fuzzy training, adjusting the weights of fuzzy classes using a genetic algorithm-based totally optimization method to better fit the data factors, and ultimately identifying and predicting patterns of statistics points. The main benefits of this method for predicting plant diseases are its abilities to analyze various plant characteristics, extract complex relationships between statistics points, identify correlations between various environmental factors and illnesses, choose the best combinations of fuzzy rules for accurate classification, and finally adapt to changing data over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.