Abstract

This study proposes an improved activation for hydrogen peroxide and persulfate using Fe-modified diatomite (MD) to favorably lead the reaction to generate hydroxyl and sulfate radicals to degrade the contaminants phenanthrene and anthracene. Diatomite was modified by impregnating it with a mixture of ferrous (Fe2+) and ferric (Fe3+) ions in the form of precipitated iron oxides and hydroxides. The raw and synthesized materials were characterized by powder X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size by laser diffraction, chemical microanalysis of the elements by energy-dispersive X-ray, and scanning electron microscopy (SEM). Batch experiments were performed to compare the new activator material (modified diatomite) with traditional methods of activation for these oxidants and to statistically study the optimum ratio between the amount of this material and the concentration of one oxidant to the degradation of the contaminants phenanthrene and anthracene. The characterization results showed that the materials are amorphous and that the Fe ion concentration was 4.78 and 17.65 % for the raw and modified diatomites, respectively. This result shows a significant increase in the amount of iron ions after synthesis. Comparing the traditional activation method with the modified diatomite, the results of batch experiments showed that the synthesized material presents significant catalytic activity for the oxidation of these contaminants, using sodium persulfate and hydrogen peroxide as oxidants. The analysis of the variables results showed that the concentration of the oxidant has higher significance than the amount of the catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.