Abstract

In the current study, ternary Ni–Cu–Fe thin films have been grown from the electrolytes with different Fe ion concentrations onto indium tin oxide coated glass substrates by galvanostatic electrodeposition at ambient temperature. The microstructural, compositional, and morphological properties have been characterized with respect to Fe ion concentration using X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). EDX results indicated that the Fe content within the films increased and Ni and Cu contents decreased as the Fe ion concentration in the electrolyte was increased. From the XRD analysis, it was observed that the films have two separate, Cu-rich and Ni-rich phases. It was also observed that the phase separation becomes weaker with increasing Fe ion concentration. All of the films have face-centered cubic structure and [111] preferred crystallographic orientation. The texture degree of the Ni-rich (111) phase increased with the Fe ion concentration. SEM and AFM measurements revealed that the surface morphology is considerably affected by the Fe ion concentration. The size of the grains formed on the film surface and the surface roughness decreased as the Fe ion concentration within the electrolyte increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.