Abstract

AbstractLow-temperature thermal cycling of plasma sprayed zirconia coatings via curvature measurements is used to quantify their nonlinear mechanical behavior. The nonlinear feature arises from the unique layered, porous and cracked morphology of thermal sprayed ceramic materials. With this procedure, various specimens were tested to investigate the effects of processing condition. The measured nonlinear properties are interpreted in the context of microstructural changes in the plasma sprayed coatings due to differences in particle state upon impact and coating build-up. The implications of this study are significant for thermo-mechanical design of strain-tolerant ceramic coatings in thermal barrier applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call