Abstract
Agent-based approach is a popular tool for modelling and developing large-scale distributed systems such as urban traffic control system with dynamic traffic flows. This study proposes a multi-agent-based approach to optimize urban traffic network signal control, which utilizes a mathematical programming method to optimize the signal timing plans at intersections. To improve the overall network efficiency, we develop an online agent-based signal coordination scheme, underpinned by the communication among different intersection control agents. In addition, the initial coordination scheme that pre-adjusts the offsets between the intersections is developed based on the historical demand information. Comparison and sensitivity analysis are conducted to evaluate the performance of the proposed method on a customized traffic simulation platform using MATLAB and VISSIM. Simulation results indicate that the proposed method can effectively avoid network oversaturation and thus reduces average travel delay and improves average vehicle speed, as compared to rule-based multi-agent signal control methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.