Abstract

The strong coupling of optical absorbers (e.g., molecules or semiconductors) to confined photonic modes fundamentally alters the physical properties of the coupled system via the formation of hybrid light-matter states. One potential application of strong light-matter coupling relies on exploiting it to localize light-induced charge excitation processes to small volumes of material. Applications that would benefit from this localization include thin-film photovoltaics, photodetection, photocatalysis, and others, where the overall performance depends on the ability of a material to amplify light absorption (i.e., the formation of electron-hole pairs) within specific locations in space. This contribution investigates how strong light-matter coupling affects light absorption rates in molecular absorbers coupled to photonic nanostructures. Our results show that the molecular light absorption efficiencies are highest in configurations where the strongly coupled molecules interact directly with the incoming photon flux. We also identify a nonlinear dependence in the molecular absorption as a function of concentration, unique to the strongly coupled systems. Based on these results, we propose design principles for engineering nanostructured systems that allow for high efficiencies of charge carrier localization into strongly coupled absorbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.