Abstract
<div class="section abstract"><div class="htmlview paragraph">The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This paper develops a long-term plan for refueling infrastructure deployment using the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy duty (HD) fuel cell electric commercial vehicles (FCEV). This constraint-based optimization model considers existing fueling locations, regional specific vehicle fuel economy and weight, vehicle origin and destination (OD), vehicle volume by class and infrastructure costs to characterize in-mission refueling requirements for a given freight corridor. The authors applied this framework to determine the ideal long term public access locations for hydrogen refueling (constrained by existing fueling stations and dispensing technology), the minimal viable cost to deploy sufficient hydrogen fuel dispensers, and associated equipment, to accommodate a growing population of hydrogen fuel cell trucks. The framework discussed in this paper can be expanded and applied to additional electrified powertrains as well as a larger interstate system, expanded regional corridor, or other transportation networks.</div></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SAE International Journal of Advances and Current Practices in Mobility
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.