Abstract

We present a technique for optimizing hundreds of thousands of variational parameters in variational quantum Monte Carlo. By introducing iterative Krylov subspace solvers and by multiplying by the Hamiltonian and overlap matrices as they are sampled, we remove the need to construct and store these matrices and thus bypass the most expensive steps of the stochastic reconfiguration and linear method optimization techniques. We demonstrate the effectiveness of this approach by using stochastic reconfiguration to optimize a correlator product state wave function with a Pfaffian reference for four example systems. In two examples on the two dimensional Fermionic Hubbard model, we study 16 and 64 site lattices, recovering energies accurate to 1$%$ in the smaller lattice and predicting particle-hole phase separation in the larger. In two examples involving an ab initio Hamiltonian, we investigate the potential energy curve of a symmetrically dissociated $4\ifmmode\times\else\texttimes\fi{}4$ hydrogen lattice as well as the singlet-triplet gap in free base porphin. In the hydrogen system we recover 98$%$ or more of the correlation energy at all geometries, while for porphin we compute the gap in a 24 orbital active space to within 0.02 eV of the exact result. The number of variational parameters in these examples ranges from $4\ifmmode\times\else\texttimes\fi{}{10}^{3}$ to $5\ifmmode\times\else\texttimes\fi{}{10}^{5}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.