Abstract
The objective of this study was to assess the impact of tube voltage and image display on the identification of power ports features on anterior-posterior scout images to inform optimal workflow for multidetector computed tomography (MDCT) examinations. Four ports, representing variable material composition (titanium/silicone), shapes, and computed tomography (CT) markings, were imaged on an adult anthropomorphic chest phantom using a dual-source MDCT at variable peak tube voltages (80, 100, 120, 150, and Sn150 kVp). Images were reviewed at variable image display setting by 5 blinded readers to assess port features of material composition, shape, and text markings as well as overall preferred image quality. Material composition was correctly identified for all ports by all readers across all kilovoltage-peak settings. The identification by shape was more reliable than CT markers for all but one of the ports. CT marker identification was up to 80% for titanium ports at window level settings optimized for metal (window width, 200; window center, -150) and at a soft tissue setting (window width, 400; window center, 40) for silicone ports. Interreader agreement for best image quality per kilovoltage-peak setting was moderate to substantial for 3 ports (k = 0.5-0.62) but only fair for 1 port (k = 0.27). The highest overall rank for image quality was given unanimously to Sn150 kVp for imaging titanium ports and 100 kVp for silicone ports. Power port identification on MDCT scout images can be optimized with modification of MDCT scout acquisition and display settings based on the main port material.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have