Abstract
• The typical structures and hydrogen storage mechanism of MgH 2 are briefly introduced. • The research progress of Mg-based hydrides is discussed systematically. • The outlook and remaining challenges upon Mg-based hydrides are delivered in detail. Hydrogen energy is expected to be an “ideal fuel” in the era of decarbonization. The discovery, development, and modification of high-performance hydrogen storage materials are the keys to the future development of solid-state hydrogen storage and hydrogen energy utilization. Magnesium hydride (MgH 2 ), with its high hydrogen storage capacity, abundant natural reserves, and environmental friendliness, has been extensively researched. Herein, we briefly summarize the typical structure and hydrogenation/dehydrogenation reaction mechanism of MgH 2 and provide a comprehensive overview of strategies to effectively tune the thermodynamics and kinetics of Mg-based materials, such as alloying, nanosizing, the introduction of additives, and composite modification. With substantial efforts, great achievements have been achieved, such as lower absorption/desorption temperatures and better cycling stability. Nonetheless, some pivotal issues remain to be addressed, such as unfavorable hydrogenation/dehydrogenation factors, harsh conditions, slow kinetics, incomplete dehydrogenation, low hydrogen purity, expensive catalysts, and a lack of valid exploration of mechanisms in the hydrogenation/dehydrogenation process. Lastly, some future development prospects of MgH 2 in energy-efficient conversion and storage have been presented, including advanced manufacturing ways, stabilization of nanostructures, the introduction of additives combined with structural modification, and utilization of advanced characterization techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have