Abstract

The Traveling Salesman Problem (TSP) represents an extensively researched challenge in combinatorial optimization. Genetic Algorithms (GAs), recognized for their nature-inspired approach, stand as potent heuristics for resolving combinatorial optimization problems. Nevertheless, GA exhibits inherent deficiencies, notably premature convergence, which diminishes population diversity and consequential inefficiencies in computational processes. Such drawbacks may result in protracted operations and potential misallocation of computational resources, particularly when confronting intricate NP-hard optimization problems. To address these challenges, the current study underscores the pivotal role of the selection operator in ameliorating GA efficiency. The proposed methodology introduces a novel parameter operator within the Stochastic Universal Selection (SUS) framework, aimed at constricting the search space and optimizing genetic operators for parent selection. This innovative approach concentrates on selecting individuals based on their fitness scores, thereby mitigating challenges associated with population sorting and individual ranking while concurrently alleviating computational complexity. Experimental results robustly validate the efficacy of the proposed approach in enhancing both solution quality and computational efficiency, thereby positioning it as a noteworthy contribution to the domain of combinatorial optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.