Abstract
In-memory deep learning executes neural network models where they are stored, thus avoiding long-distance communication between memory and computation units, resulting in considerable savings in energy and time. In-memory deep learning has already demonstrated orders of magnitude higher performance density and energy efficiency. The use of emerging memory technology (EMT) promises to increase density, energy, and performance even further. However, EMT is intrinsically unstable, resulting in random data read fluctuations. This can translate to nonnegligible accuracy loss, potentially nullifying the gains. In this article, we propose three optimization techniques that can mathematically overcome the instability problem of EMT. They can improve the accuracy of the in-memory deep learning model while maximizing its energy efficiency. Experiments show that our solution can fully recover most models' state-of-the-art (SOTA) accuracy and achieves at least an order of magnitude higher energy efficiency than the SOTA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.