Abstract

As artificial intelligence continues its rapid development, inevitable challenges arise for the mainstream computing hardware to process voluminous data (Big data). The conventional computer system based on von Neumann architecture with separated processor unit and memory is approaching the limit of computational speed and energy efficiency. Thus, novel computing architectures such as in-memory computing and neuromorphic computing based on emerging memory technologies have been proposed. In recent years, light is incorporated into computational devices, beyond the data transmission in traditional optical communications, due to its innate superiority in speed, bandwidth, energy efficiency, etc. Thereinto, photo-assisted and photoelectrical synapses are developed for neuromorphic computing. Additionally, both the storage and readout processes can be implemented in optical domain in some emerging photonic devices to leverage unique properties of photonics. In this review, we introduce typical photonic neuromorphic devices rooted from emerging memory technologies together with corresponding operational mechanisms. In the end, the advantages and limitations of these devices originated from different modulation means are listed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.