Abstract
The difficulty of an optimization task in quantum information science depends on the proper mathematical expression of the physical target. Here we demonstrate the power of optimization functionals targeting an arbitrary perfect two-qubit entangler, creating a maximally-entangled state out of some initial product state. For two quantum information platforms of current interest, nitrogen vacancy centers in diamond and superconducting Josephson junctions, we show that an arbitrary perfect entangler can be reached faster and with higher fidelity than specific two-qubit gates or local equivalence classes of two-qubit gates. Our results are obtained with two independent optimization approaches, underlining the crucial role of the optimization target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.