Abstract
Author(s): Goerz, MH; Gualdi, G; Reich, DM; Koch, CP; Motzoi, F; Whaley, KB; Vala, J; Muller, MM; Montangero, S; Calarco, T | Abstract: The difficulty of an optimization task in quantum information science depends on the proper mathematical expression of the physical target. Here we demonstrate the power of optimization functionals targeting an arbitrary perfect two-qubit entangler, which allow generation of a maximally entangled state from some initial product state. We show for two quantum information platforms of current interest, i.e., nitrogen vacancy centers in diamond and superconducting Josephson junctions, that an arbitrary perfect entangler can be reached faster and with higher fidelity than both specific two-qubit gates and local equivalence classes of two-qubit gates. Our results are obtained using two independent optimization approaches, underscoring the critical role of the optimization target.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.